ESTIMATION OF DOSE RATES TO HUMANS EXPOSED TO ELEVATED NATURAL RADIOACTIVITY THROUGH DIFFERENT PATHWAYS IN THE ISLAND OF IKARIA, GREECE

G. Trabidou* and H. Florou
National Centre for Scientific Research ‘Demokritos’, Institute of Nuclear Technology and Radiation Protection, Environmental Radioactivity Laboratory, 15310 Aghia Paraskevi, Athens, Greece

*Corresponding author: johncats@otenet.gr

Received January 19 2010, revised July 19 2010, accepted September 1 2010

A radiological survey has been carried out in the island of Ikaria based on the natural radionuclide inventory in abiotic environment and the consequent dose rate assessment for the critical groups of population. The island of Ikaria—Aegean Sea, Greece is characterised by the presence of mineral and thermo-mineral springs, which have an apparent influence on natural background radiation of the island. The levels of natural radionuclides in spring water (either for spa treatment and household use), potable water (local domestic network), and rock and soil samples were measured in this island. The concentrations of 222Rn and natural gamma emitters were found to be significantly elevated in spring water and some rock and soil samples. In terms of NORM and TENORM, the external and internal dose rates (mSv y$^{-1}$) were estimated in three groups of population selected on the basis of water use as: habitants of the island, working personnel and bathers in spa installations. According to the derived results, the working personnel in the thermal spa installations are exposed to significant radiological risk due to waterborne 222Rn with a maximum dose rate up to 35 mSv y$^{-1}$, which led to overexposure in terms of the 20 mSv y$^{-1}$ professional limits. Therefore, this group can be considered as the critical one for the radiological impact assessment in the island.

INTRODUCTION

The first references regarding the therapeutic properties of spring waters and their use in spa installations have been recorded since antiquity (Hippocrates 46–377 BC, Epicures 341–270 BC$^{(1, 2)}$).

On the basis of the staff studies$^{(3–7)}$, among the thermo-mineral springs spread throughout Greece, four of them (named Ikaria, Loutraki, Kamena Vourla and Edipsos) have been studied and are recognised as ‘radioactive’ due to their elevated concentrations of natural radionuclides. The reported radon concentrations in the wide areas of these springs are >100 Bq l$^{-1}$. In all cases the springs bubble up in the littoral zone, in the sub-littoral zone (under the strata through the surface of the bottom to the seawater layer above) and in temperate locations in the inland parts of these areas. Hence, they have been established, through centuries, as places of ‘therapeutical tourism’, where medicine practices are combined with the usual vacations near sea. Nowadays, these springs are still used for balneotherapy, whereas, in some cases spring waters are used for limited water supply. This is the case of Ikaria, where spa and potable use of spring waters is carried out.

The island of Ikaria, with an area of 267 km2 and a population of 7500, is located in the Eastern Aegean Sea, in Greece. A mountainous area dominates the island, which is located in the eastern edge of the Cycladic crystalline belt, called Atticocycladic mass of Hellenides, which is considered as a transitional zone to the Menderes mass of the Anatolia (Asia Minor Peninsula). In the littoral zone around the island there are several mineral and/or thermo-mineral springs, whereas in the sub-littoral zone some springs bubble up from the bottom as well. These are located in Therma (Springs of Apollo and Spilaio), Agios Kirikos (Aesculapius), Lefkada and Xylosirtis (Figure 1). They are divided into thermal bath spas (45–65$^\circ$C water temperatures) and potable spring water (20$^\circ$C water temperature). The springs in Therma, Agios Kirikos and Lefkada are used for balneotherapy. Xilosortis spring water, called locally ‘immortal water’, is used as a potable source.

Most of the Ikaria springs are contact springs between different rock types at the perimetric zone of the western Ikaria granite, usually bearing various dissolved ions, with NaCl as the most common among them followed by sulfosalts. The radioactive springs are related to the granitic body of the western tectonic unit, in which a high radioactive background is observed, while in the eastern unit, the rocks (granites, schists, marbles and limestone) do not present positive radiometric anomalies.

In the present study, the natural radiation status has been evaluated in the island of Ikaria. The radiological impact in areas of radioactive springs has been investigated for the habitants of the island, the thermal spa workers and the users of spa water.
ELEVATED DOSE RATES OF NATURAL RADIOACTIVITY

Figure 1. Gamma dose rates and the sampling points in the island of Ikaria.
Concerning the soil, rock and fault materials samples (Table 1), elevated levels of natural radionuclides were detected in some of the measured samples in comparison with the respective background levels from a wide sampling network in Greece. It is noteworthy that the highest concentrations were detected in the fault materials. These values range in the value spectrum reported in the international literature and are lower than the upper limits.

Concerning the spring water samples (Tables 2 and 3), ^{226}Ra and ^{222}Rn show higher concentrations compared with other Greek areas, whereas the measured domestic water samples show lower and/or comparable concentrations of ^{222}Rn and ^{226}Ra, in comparison with the respective values of the international literature. From the radiological point of view, the measurements for ^{222}Rn were below the limit of 100 Bq l$^{-1}$, recommended by the Commission of the European Communities.

Dosimetry calculations

The assessment of the radiological impact on humans, in relation to the springs has been evaluated for three cases: (A) for the habitants of the wide area, (B) the working personnel in spa installations and (C) bathers. Considering the pathway exposure of humans and the above classification, the external and internal dose calculations were performed as follows (Table 4):

1. The exposure of the population to gamma-radiation of terrestrial origin.
2. Radiological impact on the population—user of the water.
3. Radiological impact on thermal spa working personnel.
4. Radiological impact on spa users—patients.
ELEVATED DOSE RATES OF NATURAL RADIOACTIVITY

Table 4. Summarised results of dose rates to habitants, thermal spa working personnel and users of spa in the island of Ikaria (mSv y\(^{-1}\)).

<table>
<thead>
<tr>
<th>Habitants</th>
<th>mSv y(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose rate equivalent due to terrestrial gamma radiation</td>
<td>0.20–3.31</td>
</tr>
<tr>
<td>Effective dose equivalent due to (^{222})Rn intake from potable water</td>
<td>0.0001–0.12</td>
</tr>
<tr>
<td>Effective dose equivalent due to (^{222})Ra intake from potable water</td>
<td>0.025–0.18</td>
</tr>
<tr>
<td>Effective dose equivalent due to the inhalation of (^{222})Rn released from potable water</td>
<td>0.0004–0.09</td>
</tr>
<tr>
<td>Thermal spa working personnel</td>
<td></td>
</tr>
<tr>
<td>Effective dose equivalent due to the inhalation of (^{222})Rn released from spa water</td>
<td>5–35</td>
</tr>
<tr>
<td>Spa users</td>
<td></td>
</tr>
<tr>
<td>Dose rate due to gamma-radiation during the immersion into bath water</td>
<td>0.0012 (\times 10^{-3})–0.012 (\times 10^{-3})</td>
</tr>
<tr>
<td>Dose rate due to (^{222})Rn radiation during the immersion into bath water</td>
<td>0.25–1.7</td>
</tr>
<tr>
<td>Effective dose equivalent due to the inhalation of (^{222})Rn released from spa water</td>
<td>0.04–0.29</td>
</tr>
</tbody>
</table>

Case A: Radiological impact on the population-habitant of the island

Exposure of the population to gamma radiation of terrestrial origin. A major parameter in radiological impact due to natural radiation is the exposure to terrestrial gamma radiation. The dose equivalent rate (mSv y\(^{-1}\)) has been calculated using Eq. 1\(^{5, 8, 14}\) and the results of gamma spectrometry measurements in rock, soil and fault materials sampled from Ikaria areas.

\[
H = 0.061 A_s(\text{\(^{238}\)U}) + 3.103 A_s(\text{\(^{226}\)Ra}) + 1.741 A_s(\text{\(^{228}\)Ra}) + 2.582 A_s(\text{\(^{228}\)Th}) + 0.276 A_s(\text{\(^{40}\)K}),
\]

where \(H\) is the dose equivalent rate (\(\mu\text{Sv y}^{-1}\)) and \(A_s\) is the activity concentration of the respective radionuclide (Bq kg\(^{-1}\)).

In the island of Ikaria, the annual dose equivalent ranged between 0.20 and 3.31 mSv y\(^{-1}\) (Table 4). The mean values in the areas of interest are 1.52 mSv y\(^{-1}\) in Lefkada, 0.29 \(\mu\text{Sv y}^{-1}\) in Therma and Aghios Kirikos and 0.65 mSv y\(^{-1}\) in Xylosirtis. In comparison with the wide Greek area (0.1–1 mSv y\(^{-1}\)) the dose rates in Ikaria presented higher maxima. Nevertheless, in the international literature maxima \(>5\) mSv y\(^{-1}\) have been reported\(^{15}\).

In the vicinity of the springs, the following were observed: in Lefkada, the range of the calculated dose equivalent rates was 71–360 nSv h\(^{-1}\), resulting in average and maximum annual values of 1.52 and 3.31 mSv y\(^{-1}\), respectively. The respective range in Therma was 20–33 nSv h\(^{-1}\) and the respective annual average and maximum values were 0.28 and 0.29 mSv y\(^{-1}\). In the vicinity of the spring ‘immortal water’, the dose rate values were in the range of 53–149 nSv h\(^{-1}\), with an average and maximum dose equivalent of 0.65 and 1.30 mSv y\(^{-1}\), respectively. Compared with the reported mean and maximum dose equivalent rates for other Greek insular areas\(^{16}\) of 0.43 and 0.74 mSv y\(^{-1}\), the equivalent dose rates in Lefkada and immortal water were relatively higher. On the contrary, in areas around the radioactive springs in Therma the external dose rates were relatively low.

Radiological impact on the habitants due to water consumption. The significance of water in relation to the radiological impact on the population user becomes important in case of areas of high radioactive background, where the water contains high concentrations of natural radionuclides. The detected radionuclides in inland spring water that present interest for the radiological impact were the \(^{226}\)Ra and \(^{222}\)Rn.

Concerning the \(^{222}\)Rn contained in water draining into indoor places, it is released into the air of these places to a certain degree. Hence, it contributes to the radiological impact on human organism through the respiratory way also. A significant increase to the total indoor concentration of \(^{222}\)Rn, is observed in the cases of high radioactive background areas where the water contains high concentrations of \(^{222}\)Rn. This is of importance in bath-therapy installations, where the springs with high concentrations of \(^{222}\)Rn are widely used.

The radiological impact on the habitants, due to consumption of drinking water, was calculated taking into account the intake, through ingestion, of \(^{226}\)Ra and \(^{222}\)Rn. In this account, the concentrations of \(^{226}\)Ra and \(^{222}\)Rn in spring, tap and drilled water were considered:

\(^{226}\)Ra: the activity concentrations of \(^{226}\)Ra were in the range of <0.1–0.7 Bq l\(^{-1}\) (Tables 2 and 3).

The effective dose equivalents due to \(^{226}\)Ra ingestion were calculated (Table 4) on the assumption...
222Rn: first, the activity concentrations of 222Rn were estimated for 222Rn to be 0.85 mSv y\(^{-1}\). The resulting effective dose equivalent from the radiological impact on the workers due to waterborne 222Rn was in the range of 0.85–1.3 mSv y\(^{-1}\), while the waterborne 222Rn concentrations in the indoor air of Ikaria residences were in the range of 0.0004–0.09 mSv y\(^{-1}\). The highest dose corresponds to the ingestion of potable spring water. The respective range in the international literature is 0.0018–1.3 mSv y\(^{-1}\) (18–21).

The working personnel in spa installations are exposed to waterborne 222Rn and taking into account the fact that it concerns a critical group, the population of North Greece, a radiological impact on the working personnel is estimated. Considering this limit, the total working time was 900 h y\(^{-1}\). The resulting effective dose equivalent rate to the working personnel, due to inhalation of 222Rn released from the water, was in the range of 5–35 mSv y\(^{-1}\). The respective dose values found in the international and Greek literature for working personnel in other spa installations (6, 7, 18, 25, 26) are in the range of 0.4–44 mSv y\(^{-1}\). It should be noted that in most of the referred areas, the spas function 9 months per year and the dose calculations have been performed on a higher total working time than the total working time in Ikaria spas.

It should be mentioned that the Chernobyl accident has caused to the mean Greek habitant—in an interval of 8 months (5/86–12/86)—additional dose of 0.51 mSv. The respective dose for the mean Greek habitant of a critical group reaches the 1.94 mSv (DEMO 86/3G and DEMO 86/10G) (27, 28). As a critical group, the population of North Greece (Macedonia) is considered, as this region accepted the highest impact during the period of the radioactive cloud arrival.

Case C: Radiological impact on bathers

The dose rates for bathers depend on the type of therapy. Bathers using the spa waters, besides the external exposure from bath-therapy in the water, are subject to internal irradiation due to inhalation of 222Rn. In the ICRP report (17, 18), an indoor air radon limit of 200–600 Bq m\(^{-3}\) for non-occupational exposure is recommended. Considering this limit, the indoor 222Rn concentrations in Apollo and Asclepiad spa installations were relatively high. More specific is the following:

External dose rates due to immersion in the water. The dose rates (Gy s\(^{-1}\)) due to natural radon. It is noteworthy that according to the ICRP 65 report (17), the workers in radon thermal spas belong to the professional groups, which may be exposed to high radiation doses, due to high concentrations of 222Rn in the indoor air of the installations.

The spa installations at Apollo, Spilaio and Asclepiad are widely used for the cure of many different diseases. In order to estimate the radiological impact on the workers due to waterborne 222Rn inhalation, the mean contribution of the waterborne 222Rn in the indoor air concentrations was evaluated, based on a transfer coefficient from water to air of 2.7 × 10\(^{-3}\) (19, 24). Hence, the 222Rn concentrations of the spa indoor installations were found to be 2611 Bq m\(^{-3}\) for Apollo, 362 Bq m\(^{-3}\) for Spilaio and 2746 Bq m\(^{-3}\) for Asclepiad. The annual effective dose equivalent due to inhalation was calculated using the conversion 1.5 × 10\(^{-1}\) mSv per Bq h m\(^{-1}\). The calculations were performed on the assumption that the total working time was 900 h y\(^{-1}\). The resulting effective dose equivalent rate to the working personnel, due to inhalation of 222Rn released from the water, was in the range of 5–35 mSv y\(^{-1}\). The respective dose values found in the international and Greek literature for working personnel in other spa installations (6, 7, 18, 25, 26) are in the range of 0.4–44 mSv y\(^{-1}\). It should be noted that in most of the referred areas, the spas function 9 months per year and the dose calculations have been performed on a higher total working time than the total working time in Ikaria spas.

The dose rates for bathers depend on the type of therapy. Bathers using the spa waters, besides the external exposure from bath-therapy in the water, are subject to internal irradiation due to inhalation of 222Rn. In the ICRP report (17, 18), an indoor air radon limit of 200–600 Bq m\(^{-3}\) for non-occupational exposure is recommended. Considering this limit, the indoor 222Rn concentrations in Apollo and Asclepiad spa installations were relatively high. More specific is the following:

External dose rates due to immersion in the water. The dose rates (Gy s\(^{-1}\)) due to natural radon. It is noteworthy that according to the ICRP 65 report (17), the workers in radon thermal spas belong to the professional groups, which may be exposed to high radiation doses, due to high concentrations of 222Rn in the indoor air of the installations.

The spa installations at Apollo, Spilaio and Asclepiad are widely used for the cure of many different diseases. In order to estimate the radiological impact on the workers due to waterborne 222Rn inhalation, the mean contribution of the waterborne 222Rn in the indoor air concentrations was evaluated, based on a transfer coefficient from water to air of 2.7 × 10\(^{-3}\) (19, 24). Hence, the 222Rn concentrations of the spa indoor installations were found to be 2611 Bq m\(^{-3}\) for Apollo, 362 Bq m\(^{-3}\) for Spilaio and 2746 Bq m\(^{-3}\) for Asclepiad. The annual effective dose equivalent due to inhalation was calculated using the conversion 1.5 × 10\(^{-1}\) mSv per Bq h m\(^{-1}\). The calculations were performed on the assumption that the total working time was 900 h y\(^{-1}\). The resulting effective dose equivalent rate to the working personnel, due to inhalation of 222Rn released from the water, was in the range of 5–35 mSv y\(^{-1}\). The respective dose values found in the international and Greek literature for working personnel in other spa installations (6, 7, 18, 25, 26) are in the range of 0.4–44 mSv y\(^{-1}\). It should be noted that in most of the referred areas, the spas function 9 months per year and the dose calculations have been performed on a higher total working time than the total working time in Ikaria spas.

It should be mentioned that the Chernobyl accident has caused to the mean Greek habitant—in an interval of 8 months (5/86–12/86)—additional dose of 0.51 mSv. The respective dose for the mean Greek habitant of a critical group reaches the 1.94 mSv (DEMO 86/3G and DEMO 86/10G) (27, 28). As a critical group, the population of North Greece (Macedonia) is considered, as this region accepted the highest impact during the period of the radioactive cloud arrival.
ELEVATED DOSE RATES OF NATURAL RADIOACTIVITY

gamma emitters in spa water were calculated on the basis of the following equations\(^{(5)}\), taking into account the natural radionuclides’ concentrations in spa installation water:

\[
D(^{238}\text{U}) = 0.533 \times 10^{-14} A_s(^{238}\text{U}),
\]

\[
D(^{226}\text{Ra}) = 28.10 \times 10^{-14} A_s(^{226}\text{Ra}),
\]

\[
D(^{228}\text{Ra}) = 15.76 \times 10^{-14} A_s(^{228}\text{Ra}),
\]

\[
D(^{228}\text{Th}) = 23.41 \times 10^{-14} A_s(^{228}\text{Th}),
\]

\[
D(^{40}\text{K}) = 2.50 \times 10^{-14} A_s(^{40}\text{K}).
\]

The dose rates resulting from the \(^{222}\text{Rn}\) contained in water were calculated on the assumption of a 0.5 equilibrium factor between \(^{222}\text{Rn}\) and its daughters. The conversion factors were 0.286 and 1.95 Sv y\(^{-1}\) per Bq cm\(^{-1}\) for \(^{214}\text{Pb}\) and \(^{214}\text{Bi}\), respectively. The results are given in Table 4.

Internal dose rates due to waterborne \(^{222}\text{Rn} inhalation. The annual effective dose equivalent due to \(^{222}\text{Rn} inhalation was calculated using the factor 1.4 \times 10^{-9} \text{mSv per Bq h m}^2\), on the assumption of a mean total stay in the indoor place of the installations 45 min for a mean number of 10 therapies. The results are shown in Table 4.

CONCLUSIONS

Elevated levels of natural radionuclides were detected in some of the measured samples in comparison to the respective background levels in Greece. The existence of high concentrations of natural radionuclides in the abiotic environment of the island of Ikaria resulted in some cases to overdoses in relation to the typical background (2.5 mSv y\(^{-1}\)). The range of external and internal dose rates for the habitants, working personnel and spring water users was very broad (0.0012 \times 10^{-3}–35 mSv y\(^{-1}\)).

In comparison to the wide Greek territory and the reported literature, the dose equivalent rates due to terrestrial gamma radiation determined in the island of Ikaria were found to range in the upper limit of the value spectrum. Considering the consumption of potable water, the spring called ‘immortal water’ results to overdoses for the population, i.e. due to the \(^{226}\text{Ra}\) ingestion (0.025–0.18 mSv y\(^{-1}\)), with the maxima exceeding the recommended limit of 0.1 mSv y\(^{-1}\). The impact on working personnel in spa installations was due to waterborne \(^{222}\text{Rn} with a maximum dose rate up to 35 mSv y\(^{-1}\), which led to overexposure in terms of the 20 mSv y\(^{-1}\) professional limits. In terms of the bathers, they are exposed mainly to \(^{222}\text{Rn}\) exposure during the immersion into bath water, with a dose rate of 0.25–1.7 mSv y\(^{-1}\).

ACKNOWLEDGEMENTS

The authors thank Assistant Professor G. Nicolaou (Faculty of Engineering, Department of Electrical and Computer Engineering, Laboratory of Nuclear Technology, Demokritos University of Greece) for his critical reading of the manuscript.

FUNDING

REFERENCES

G. TRABIDOU AND H. FLOROU

